Subcellular Sorting of the G-Protein Coupled Mouse Somatostatin Receptor 5 by a Network of PDZ-Domain Containing Proteins
نویسندگان
چکیده
PSD-95/discs large/ZO-1 (PDZ) domain proteins integrate many G-protein coupled receptors (GPCRs) into membrane associated signalling complexes. Additional PDZ proteins are involved in intracellular receptor trafficking. We show that three PDZ proteins (SNX27, PIST and NHERF1/3) regulate the mouse somatostatin receptor subtype 5 (SSTR5). Whereas the PDZ ligand motif of SSTR5 is not necessary for plasma membrane targeting or internalization, it protects the SSTR5 from postendocytic degradation. Under conditions of lysosomal inhibition, recycling of the SSTR5 to the plasma membrane does not depend on the PDZ ligand. However, recycling of the wild type receptor carrying the PDZ binding motif depends on SNX27 which interacts and colocalizes with the receptor in endosomal compartments. PIST, implicated in lysosomal targeting of some membrane proteins, does not lead to degradation of the SSTR5. Instead, overexpressed PIST retains the SSTR5 at the Golgi. NHERF family members release SSTR5 from retention by PIST, allowing for plasma membrane insertion. Our data suggest that PDZ proteins act sequentially on the GPCR at different stages of its subcellular trafficking.
منابع مشابه
PDZ Domain-Mediated Interactions of G Protein-Coupled Receptors with Postsynaptic Density Protein 95: Quantitative Characterization of Interactions
G protein-coupled receptors (GPCRs) constitute the largest family of membrane proteins in the human genome. Their signaling is regulated by scaffold proteins containing PDZ domains, but although these interactions are important for GPCR function, they are still poorly understood. We here present a quantitative characterization of the kinetics and affinity of interactions between GPCRs and one o...
متن کاملPDZ Protein Regulation of G Protein-Coupled Receptor Trafficking and Signaling Pathways.
G protein-coupled receptors (GPCRs) contribute to the regulation of every aspect of human physiology and are therapeutic targets for the treatment of numerous diseases. As a consequence, understanding the myriad of mechanisms controlling GPCR signaling and trafficking is essential for the development of new pharmacological strategies for the treatment of human pathologies. Of the many GPCR-inte...
متن کاملA kinase-regulated PDZ-domain interaction controls endocytic sorting of the beta2-adrenergic receptor.
A fundamental question in cell biology is how membrane proteins are sorted in the endocytic pathway. The sorting of internalized beta2-adrenergic receptors between recycling endosomes and lysosomes is responsible for opposite effects on signal transduction and is regulated by physiological stimuli. Here we describe a mechanism that controls this sorting operation, which is mediated by a family ...
متن کاملNew sorting nexin (SNX27) and NHERF specifically interact with the 5-HT4a receptor splice variant: roles in receptor targeting.
The 5-hydroxytryptamine type 4 receptor (5-HT4R) is involved in learning, feeding, respiratory control and gastrointestinal transit. This receptor is one of the G-protein-coupled receptors for which alternative mRNA splicing generates the most variants that differ in their C-terminal extremities. Some 5-HT4R variants (a, e and f) express canonical PDZ ligands at their C-termini. Here, we have e...
متن کاملG-protein Coupled Receptor Dimerization
A growing body of evidence suggests that GPCRs exist and function as dimers or higher oligomers. The evidence for GPCR dimerization comes from biochemical, biophysical and functional studies. In addition, researchers have shown the occurrence of heterodimerization between different members of the GPCR family. Two receptors can interact with each other to make a dimer through their extracellular...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014